Math Pro 數學補給站's Archiver

先為別人想,
再為自己想。

rik 發表於 2011-4-8 20:24

排列組合,十人分成3、3、4人等三組住進A.B.C三個房間

某次畢旅中,將甲、乙、......、癸等十個人分成3人、3人、4人等三組住進A.B.C三個房間,則:

若甲跟乙要求住在同一間房,則住法有幾種?

katama5667 發表於 2011-4-8 23:31

不知對不對
(1)甲、乙住3人房:

\( C^{3}_{1}\times C^{8}_{1}\times C^{7}_{3}\times C^{4}_{4}=840 \)

(2)甲、乙住4人房:

\( C^{3}_{1}\times C^{8}_{2}\times C^{6}_{3}\times C^{3}_{3}=1680 \)

所以共有2520種

-------------------------------------------

以上經大大指正,忘了考量3人房有2間了!
請參考樓下!

[[i] 本帖最後由 katama5667 於 2011-4-9 12:48 PM 編輯 [/i]]

weiye 發表於 2011-4-9 02:18

[quote]原帖由 [i]katama5667[/i] 於 2011-4-8 11:31 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=2903&ptid=1086][img]https://math.pro/db/images/common/back.gif[/img][/url]
不知對不對
(1)甲、乙住3人房:

\( C^{3}_{1}\times C^{8}_{1}\times C^{7}_{3}\times C^{4}_{4}=840 \)

(2)甲、乙住4人房:

\( C^{3}_{1}\times C^{8}_{2}\times C^{6}_{3}\times C^{3}_{3}=1680 \)

所以共有2520種 ... [/quote]

(1)甲、乙住3人房:

[color=Red]要多乘一個 2[/color]

\( C^{3}_{1}\times C^{8}_{1}\times C^{7}_{3}\times C^{4}_{4}\times 2=1680 \)

[color=Blue](甲乙先由三間房中選一間房,再由剩下 8 人中選 1 位與甲乙同房,[/color]

[color=Blue] 再把剩下 7 人分成 3 人一組與 4 人一組,然後對應到剩下的兩間房間。)[/color]

(2)甲、乙住4人房:

\( C^{3}_{1}\times C^{8}_{2}\times C^{6}_{3}\times C^{3}_{3}=1680 \)


[color=Blue](甲乙先由三間房中選一間房,再由剩下 8 人中選 2 位與甲乙同房,[/color]

[color=Blue] 再把剩下 6 人平均分配給剩下的兩間房。)[/color]

所以共有 [color=Red]3360[/color] 種







或是另解,先分成 3,3,4 人共三堆,再把分完的三堆對應到三間房間。

\(\displaystyle\left(C^8_2\cdot \frac{C^6_3 \cdot C^3_3}{2!}+C^8_1\cdot C^7_3 \cdot C^4_4\right)\cdot 3!=3360\)

katama5667 發表於 2011-4-9 12:47

我忘了!3人房有2間!
感謝指正!

rik 發表於 2011-4-9 17:37

謝謝大大!!

kittyyaya 發表於 2011-4-15 01:37

我對這題有另一種角度來看
"....等十個人分成3人、3人、4人等三組住進A.B.C三個房間...",題目的意思是指A房間住3人,B房間住3人,C房間住4人嗎,
若是這樣,我的答案是 [size=1]8[size=4]C[/size]1[/size][size=4]*[size=1]7[/size][size=4]C[/size][size=1]3[/size][size=4]*[size=1]4[/size][size=4]C[/size][size=1]4[/size][size=4]*2!+[size=1]8[/size][size=4]C[/size][size=1]3[/size][size=4]*[/size][size=4][size=4][size=1]5[/size][size=4]C[/size][size=1]3[/size][size=4]*[size=4][size=1]2[/size][size=4]C[/size][size=1]2[/size][/size][/size][/size][/size][/size][/size][/size][size=4]=560+560=1120[/size]
[size=2]請問各位老師這樣看法有可能嗎? 謝謝[/size]

weiye 發表於 2011-4-15 15:01

如果題目的意思改成「A房間住3人,B房間住3人,C房間住4人」,則

解答=\(\displaystyle\frac{8!}{1!3!4!}+\frac{8!}{3!1!4!}+\frac{8!}{3!3!2!}=1120\)。

沒錯。(或是如上用 C 寫也可以啦。)



不過,我感覺語意上,題目比較像是寫「分組之後,再住進」,而不是寫「分別對應住進」。

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.