99苗栗高中
我打電話去 搬出公立高級中等以下學校教師甄選作業要點第九條該校才公佈考題。
這一份考卷共有20題
填充8題 計算12題
我是當成在100分鐘內要寫20題計算題 因為他答案卷上也沒有話填充題的格子
50分通過初試
晚上我會努力回想計算題
有想到在PO上來
計算題其中有一題是證明微積分第一基本定理
另外有一題是
設實數,f(xy)=f(x)/y 若f(500)=3,求f(600)=?
以上兩題是我目前可以回想起來的 做得好!
我是覺得無論如何只要有辦筆試就應該全部公佈題目
沒有什麼只公佈選擇填充題的
我支持你
做得好
希望您早日正取 2.設\( x^3+2x^2+3x+4=0 \)三根為\( \alpha,\beta,\gamma \),則\( \alpha^5+\beta^5+\gamma^5 \)
除了正規的方法外,提供另一種方法
\( f(x)=x^3+2x^2+3x+4 \) , \( f'(x)=3x^2+4x+3 \)
利用綜合除法計算\( \displaystyle \frac{f'(x)}{f(x)} \)
\( \matrix{
3 & 4 & 3 & & & & & \cr
& -6& 4 & 4 & 4 &-36& & \cr
& & -9& 6 & 6 & 6 &-54& \cr
& & &-12& 8 & 8 & 8 &-72\cr
-& -& -& -& -& -& -& -\cr
3 & -2& -2& -2& 18&-22&...&...} \Bigg\vert\;
\matrix{-2 \cr -3 \cr -4 \cr \cr } \)
底下的答案剛好是\( \alpha^n+\beta^n+\gamma^n \),n從0到5次方的答案
2011.4.17補充
令\( a,b,c \)為三次方程式\( x^3+5x+11=0 \)的根,求\( a^3+b^3+c^3 \)
(A)\( -33 \) (B)33 (C)22 (D)\( -22 \)
(98金門縣國中聯招)
102.6.19補充
方程式\( x^3-x^2+2x-1=0 \)的三根為\( a,b,c \),則\( a^6+b^6+c^6= \)
(102師大附中,[url]https://math.pro/db/thread-1653-1-1.html[/url])
102.7.14補充
若\( \alpha,\beta,\gamma \)為\( x^3-2x+3=0 \)的三根,則\( \alpha^4+\beta^4+\gamma^4= \)
(102台中二中代理,[url]https://math.pro/db/thread-1691-1-1.html[/url])
正統解法[url]http://www.shiner.idv.tw/teachers/viewtopic.php?f=46&t=2455[/url] 第二題的解法超酷的耶,請問有什麼知識背景嗎?
另外,我想請問各位先進[b]第6題[/b]
空間中兩直線\(\displaystyle\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z-1}{2},\frac{x-3}{6}=\frac{y+2}{2}=\frac{z-1}{3}\)
所夾之鈍角角平分線方程式? (很抱歉我還不習慣用網站裡的符號....還在摸索當中...) 第 6 題:空間中兩直線 \(\displaystyle L_1:\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z-1}{2},\,L_2:\frac{x-3}{6}=\frac{y+2}{2}=\frac{z-1}{3}\) 所夾之鈍角角平分線方程式為______________。
解答:
由題目所給之方程式,馬上可以看出兩直線通過定點 \((3,-2,1)\),且兩直線之方向向量為 \(\vec{n_1}=(2,-1,2),\vec{n_2}=(6,2,3)\),
由於 \(\vec{n_1}\cdot\vec{n_2}>0\),所以 \(\vec{n_1}\) 與 \(\vec{n_2}\) 夾銳夾角,
將其中一個調整至相反方向,令 \(\vec{m_1}=-\vec{n_1}=(-2,1,-2)\),
其角平分線的向量為 \(\left|\vec{m_1}\right|\vec{n_2}+\left|\vec{n_2}\right|\vec{m_1}=(4,13,-5)\),
故,\(L_1\) 與 \(L_2\) 的鈍角角平分線方程式為 \(\displaystyle\frac{x-3}{4}=\frac{y+2}{13}=\frac{z-1}{-5}.\) [quote]原帖由 [i]addcinabo[/i] 於 2010-9-21 09:13 AM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=2662&ptid=1019][img]https://math.pro/db/images/common/back.gif[/img][/url]
第二題的解法超酷的耶,請問有什麼知識背景嗎? [/quote]
\(\displaystyle f(x)=\left(x-\alpha\right)\left(x-\beta\right)\left(x-\gamma\right)\Rightarrow f\,'(x)=\left(x-\beta\right)\left(x-\gamma\right)+\left(x-\alpha\right)\left(x-\gamma\right)+\left(x-\alpha\right)\left(x-\beta\right)\)
因此,
\(\displaystyle\frac{f\,'(x)}{f(x)}=\frac{1}{x-\alpha}+\frac{1}{x-\beta}+\frac{1}{x-\gamma}\)
\(\displaystyle=\frac{1}{x}\left(1+\frac{\alpha}{x}+\frac{\alpha^2}{x^2}+\cdots\right)+\frac{1}{x}\left(1+\frac{\beta}{x}+\frac{\beta^2}{x^2}+\cdots\right)+\frac{1}{x}\left(1+\frac{\gamma}{x}+\frac{\gamma^2}{x^2}+\cdots\right)\)
\(\displaystyle=3\cdot x^{-1}+\left(\alpha+\beta+\gamma\right)x^{-2}+\left(\alpha^2+\beta^2+\gamma^2\right)x^{-3}+\cdots\)
其中,幾何級數的收斂條件是 \(\displaystyle\left|\frac{\alpha}{x}\right|<1,\left|\frac{\beta}{x}\right|<1,\left|\frac{\gamma}{x}\right|<1\)。 感謝老師的回答,歹勢,中秋節放假一下,所以現在才回^^ 請問一下,老師所說由於[color=red] \(\vec{n_1}\cdot\vec{n_2}>0\),所以 \(\vec{n_1}\) 與 \(\vec{n_2}\) 夾銳夾角,
[/color][color=black]這個部分的觀念是怎麼來的,我不太懂??[/color]
另外,我的做法是先算出n1,n2的單位向量出來,再相加減,得出兩個角平分線向量,不過我判斷不出來哪一個向量是所求?
[quote]原帖由 [i]weiye[/i] 於 2010-9-21 10:46 AM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=2663&ptid=1019][img]https://math.pro/db/images/common/back.gif[/img][/url]
第 6 題:空間中兩直線 \(\displaystyle L_1:\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z-1}{2},\,L_2:\frac{x-3}{6}=\frac{y+2}{2}=\frac{z-1}{3}\) 所夾之鈍角角平分線方程式為______________。
解答:
由題目所給之方程 ... [/quote]
回復 8# waitpub 的帖子
若兩非零向量 \(\vec{n_1}\) 與 \(\vec{n_2}\) 夾角為 \(\theta\)(其中 \(0^\circ\leq\theta\leq 180^\circ\) ),由內積定義 \(\vec{n_1}\cdot\vec{n_2}=\left|\vec{n_1}\right|\cdot\left|\vec{n_2}\right|\cdot\cos\theta\),
可以知道
\(\vec{n_1}\cdot\vec{n_2}>0\Leftrightarrow\cos\theta>0\Leftrightarrow 0^\circ<\theta<90^\circ\)
\(\Leftrightarrow \theta\) 為銳角。
回復 1# liengpi 的帖子
請教第7題,感謝。回復 10# mathca 的帖子
第 7 題求與兩圓\(C_1\):\(x^2+y^2=1\),\(C_2\):\(x^2+(y-10)^2=9\)均內切或均外切的動圓圓心軌跡方程式為[u] [/u]。
[解答]
\(x^2 + y^2 = 1\),圓心\( C_1(0,0)\),半徑 1
\(x^2 + (y - 10)^2 = 9\),圓心\( C_2(0,10)\),半徑 3
動圓圓心\( A(x,y)\),半徑\( r\)
均外切:\(AC_1 = r + 1\),\(AC_2 = r + 3\),\( |\; AC_1 - AC_2 |\; = 2 \)
均內切:\(AC_1 = r - 1\),\(AC_2 = r - 3\),\( |\; AC_1 - AC_2 |\; = 2 \)
......
頁:
[1]